! €3 \ I/ L / y J —rain v | LIPS
AN i, | /)

Transformmg Language Models

i into Smart Contract Audit Experts

TEAM: ,
Yuqiang Sun (NTU)
- Daoyuan Wu (HKUST)

P g y 4 ’ [/Jf,ﬂ"_ _,__".__ &, &

AT S
¥ - e AN

S

i B
75]
SIS

-
o
ot

onNn

ic analy:

stat
iled on smart contra

Introduct
ional

Why trad
tools fa

] /
y Y4 [

Prevalence of vulnera

7

\ s 7 /) 5 v
e £ he ry
4 A ['
I
/. L

- J/ ' ;!
S gl >

R o).

¢
L

xploitable
‘\: S i

More than < /0 of the

i
1
: /

{ - {
o | ¢

vulnerability for smart contracts are

t

{

machine undetectable.

1o d / A .-‘,/, s o ¢ { /"’

Most of them are related to the

{
J

business logic.

VA

N =

L)

' AAR o TN o e . oo o o o o N W oo o EEME L mo s s aan -o \i i e i v - e’ s »

ARDIEEATIN BB GESET 7 | RIS AR R |)

Example for Logic Bugs

The first depositor could get all the

function deposit(uint256 _amount) external returns (uint256) {
: . uint256 _pool = balance() ;
Shares and manlle|ate the prlce per uint256 _before = token.balanceOf (address(this));
token.safeTransferFrom(msg.sender, address(this), _amount) ;
uint256 _after = token.balanceOf (address(this));

Share _amount = _after.sub(_before); // Additional check for deflationary
tokens
. uint256 _shares = 0;
To detect the vuln in the example: if (totalSupply () == 0) {
_shares = _amount;

} else {

1_ KnOW |t |S a depOSIt X _shares = (_amount.mul (totalSupply())).div(_pool);

_mint (msg.sender, _shares);

14 }

2. Find the share calculation statement

3. Check the If branch

g—_dfff | ic yirr g~y e .-‘~\\h_
| a7 1 St ol | | e B s

7l L) A o
5 Al B 34° W | f vl A
Vo oy A | _ Vi &
A Y ¢ _’:é; i
i e (27 = |
/'/
/" 7
I m
SO ution .;
/
/
’ ; /
J : / Jes,
| 4 %

Vuln Report

Source Code

s \ , ‘ | ‘ e e I "

Challenges 1:
Limited input Iength

. - HENEEEEEEEEEEEEEEEEEE -.

GPT 3.5/4 i 4K~32K token length

Real world projects are much longer

Challenges 2:
Domain Specific Knowledge

\ 5555552;
o
(./’ §§2 P RN 3 29 Price Related Vulns
|
Built-in ‘\
knowledge GPT or other LLMs
Access Control
Related Vulns

Programming
Language
Related Vuins

|
| Source
E Code

Other Challenges

7

KI'oo complex tasks\ / Hallucination \ / Other problems \ v
\g

@ ©
¢é¢

LLM may not be able to LLMs may have hallucinations Lack of proper training
understand tasks that are and will not always give the data, and other challenges.
too complex. correct answer.

A e o g g

T I I_ .- - ; - —
' rJ F . 1
/ _f"r i’r i - - ; . e ; I —
3 o { & ! 1
A - | ! ': |

ies?

How LLM could help detect

logic vulnerabil

Th

J Structure
y Information
| E =) =)
Project |—\/:
Semantic
Summarization
"
%
§

— [T -

3 /—_/ : — =
ey 7 7 f Fi .'__.-" ,.-"I

Sub-task 1 Dataflow
Analysis
Fj Engine
Programming
Sub-task 2
KLa”g”age SEY e d71 %
nowledge SR e
Database . ‘ - AR
Matching Execution
Engine
LLM as
Sub-task
Vulnerability Generator
Knowledge
Database

Al Based

Sub-task n :
Engine

Vuln
Report

Step 1
Code Summarization & Knowledge Matching

/Structural Information\
{ * Call graph Find Related Code Segments

» / Usage of state variables

f * Class inheritance

| e Code- Knowledge Pairs
/Semantic Information\

* Functionality of projects 1. Embedding 2. Vector Similarity
contracts and functions Matching l Vulnerability
! * Business model of the pnygiodte
% g \ oroject / Database

Step 2 A
ask Decomposing

Running the analyzer

N\

}1 ;) y (5
{ /; : ’
OIIIp ex as i
Retrieved Knowledge

)/ When a pool allows the first depositor to lock an extremely small amount of liquidity, it can be manipulated to cause undesired outcomes

; DRy for future liquidity providers, such as rounding down their minted shares to zero. By transferring a large amount of attributions to the
Or tOOIS (e &%/ pool after depositing a small amount, an attacker can obtain higher shares of the pool than they should. When the second provider
: deposits into the pool, the amount they get may round down to zero due to the small initial liquidity provided, effectively allowing the
, ; attacker to steal funds from other liquidity providers. The core vulnerability lies in the improper handling of the smallest possible
amount deposited and attributions during the calculation of new liquidity provider shares. By exploiting this vulnerability, attackers
s / can cause asset loss or compromise the pool's integrity.

’ - Current Step
DeCO m pose : L : [/ Does the deposit function calculate shares without checking for a minimum deposit amount?

Simple Tasks
| " Can be handled by LLM or

static analysis tools

§ £ ‘ ‘ 27 f
<Y '
L g 7 '\., ‘f‘,‘} f‘ i /,.
% 2 ¢ 'l;'f:“ﬁj}f : a '
LA L% : = 4 |
m
:EEE;lI-JI I[:]’ 2 1t:iEE| :Ei; I“:; IEEE Ifql !E;]l I Ir-1| ‘EE’
, Current Step
Does the deposit function calculate shares without checking for a minimum deposit amount? J

Dataflow Analysis

Source Sink

Step Dataflow finished with result True

-

Dataflow Analysis Engine

- Current Step
Does the function allow the deposit of extremely small amounts which can lead to extremely small or zero share allocation for future
liquidity providers?

Sub-task 1

Symbolic Execution

Sub-task 2

Variable | Boundary

Step Symbolic Execution finished with result True

Symbolic Execution Engine

Knowledge: have inside code statements that update/accrue interest/exchange rate, and have inside code statements that calculate/assign/distribute the balance/share/stake/fee/loan/reward
Code:
function pendingReward(address _user)
external
view
returns (uint256)

Toolsets for
executing
the tasks

uint256 rewardShare = accRewardPerShare;
uint256 staked = totalStaked;
//if blockNumber is greater than the pool's ‘lastRewardBlock' the pool's ‘accRewardPerShare' is outdated,
//we need to calculate the up to date amount to return an accurate reward value
if (block.number > lastRewardBlock && staked > 0) {
(rewardShare,) = _computeUpdate();

return
//rewards that the user had already accumulated but not claimed
userPendingRewards[_user] +
//subtracting the user's ‘lastAccRewardPerShare' from the pool's ‘accRewardPerShare' results in the amount of rewards per share
//the pool has accumulated since the user's last claim, multiplying it by the user's shares results in the amount of new rewards claimable
//by the user
(balanceOf[_user] * (rewardShare - userlLastAccRewardPerShare[_user])) /
le36;

Sub-task n

Yes.

Al Based Engine

INS—

d

impact of Au

How was the

?

| world

IN rea

Vulnerability Bounties

3 | % codedrena
32 new ' gnew

¥ vulnerabilities vulnerabilities

= b N
i [OTAL o 4 [OTAL

30+ 10k

k projects bounty per month

- & il >

L/
4

Demeo /i L

PROBLEMS OUTPUT DEBUG CONSOLE

- src git:(main) X |}

TERMINAL

/i
V. ¥4

.\
y
¥ 5 /
/

www. BANDIC

= /
/ /

i // LY
/I,/ Al i s : {8 "W : ",' 7

AM. COM'

I

Y ok
/b

S

Y e s » 45
- » ok S P TR
« A\ o G 2 g T
' “;",7" bl v ey b /5 / X o J
o - \§| Z Qe ¢ " e) 5 / 7
-5 P D Al ¢ A
Vo e "‘4 e | #
’ ‘ '] « J o

Related Studies

AuditGPT is based on the following works:

1. GPTScan: Detecting LOQicvu'InerabiIities in Smart Contracts by Combining GPT
with Program Analysis (ICSE 2024)

2. LLM4Vuln: A Unified Evaluation Framework for Decoupling and Enhancing LLMs'
Vulnerability Reasoning (arXiv:2401.16185) ’

3. PropertyGPT: LLM-driven Formal Verification of Smart Contracts through

k Retrieval-Augmented Property Generation (arXiv:2405.02580)

Ny
b

Lot

/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

